SANOAT TARMOQLARINI OPTIMAL SEGMENTATSIYALASHDA GMM VA K-MEANS USULLARINING GIBRID YONDASHUVI
DOI:
https://doi.org/10.60078/3060-4842-2025-vol2-iss5-pp830-839Annotasiya
Maqolada sanoat tarmoqlarini optimallashtirishda segmentatsiyalash hozirgi kundagi dolzarb mavzulardan biri ekanligi, hamda segmentatsiyalashda GMM modeli va K-meansning analitik sharhlari keng yoritib berilgan. Segmentatsiyalashda K-Means va GMM usullarining taqqoslama sharhi to‘liq tahlil qilingan. GMM va K-means usullarini umumlashtirishning “Oqim sxemasi” yo‘nalishida “Yangi GMM usuli” algoritmi va segmentatsiyalashning takomillashtirilgan gibrid modeli (HSM)ni amalga oshirish algoritmi ishlab chiqilgan. Sanoat tarmoqlarini optimal segmentatsiyalashning gibrid yondashuvi bo‘yicha xulosa va takliflar berilgan
Kalit so‘zlar:
sanoat tarmoqlari optimal segmentatsiyalash klasterlashtirish K-means usuli GMM (Gaussian Mixture Model) usuli Oqim sxemasi algoritm iteratsiya adaptatsiya integratsiya kovariatsiya gibrid modelBibliografik manbalar
Antropov V.V. (2017) Application of k-means and g-means clustering algorithms in objects recognition. International Research Journal, No. 07 (61), Part 3. – p-6-9.
Baid U. et al. (2017) Comparative Study of K-means, Gaussian Mixture Model, Fuzzy C-means algorithms for Brain Tumor Segmentation. Atlantis Press. Vol. 137, – pp-592-597.
Eva Patel et al. (2020) Clustering Cloud Workloads: K-Means vs Gaussian Mixture Model. Procedia Computer Science 171. 158–167.
Guledgudd T. et al. (2024) A Comparative Study of K-Means, GMM, SVM, and Random Forest for Enhancing Machine Learning in Leukemia Diagnosis. Afr. J. Biomed. Res. Vol. 27(4s) (November); 4257-4268.
Haifei Peng et al. (2024) Multi-modal hybrid modeling strategy based on Gaussian Mixture Variational Autoencoder and spatial–temporal attention: Application to industrial process prediction. Chemometrics and Intelligent Laboratory Systems. Volume 244, 105029 / https://doi.org/10.1016/j.chemolab.2023.105029.
Iman A.A. et al. (2023) A comparative study of Gaussian mixture algorithm and K-means algorithm for efficient energy clustering in MWSN. Bulletin of Electrical Engineering and Informatics, Vol. 12, No. 6, December, pp. 3727-3735, DOI: 10.11591/eei.v12i6.5707.
Jurg L., Dennis F. (2019) k-means as a variational EM approximation of Gaussian mixture models. Pattern Recognition Letters.vol-5. -p-1-14. https://doi.org/10.1016/j.patrec.2019.04.001.
Kodamana Zh.H., Afacan A. (2019) A GMM-MRF Based Image Segmentation approach for Interface Level Estimation. IFAC-PapersOnLine Volume 52, Issue 1, Pages 28-33 / https://doi.org/10.1016/j.ifacol. 2019.06.061.
Pахимов А., Эшонқулов Ж. (2022) Саноат корхоналарида ишлаб чиқаришнинг иқтисодий қувватини ошириш механизми //Iqtisodiyot va taʼlim. – Т. 23. – №. 6. – С. 390-395.
Rakhimov A., Ravshanova M., Alieva M. (2023) Econometric analysis of increasing efficiency of industrial enterprises //E3S Web of Conferences. – EDP Sciences, – Т. 458. – С. 04004.
Raximov A.N. (2024) Sanoat tarmoqlarining milliy iqtisodiyot barqarorligini ta ‘milashdagi roli va rivojlantirish siyosati //Spanish Journal of Innovation and Integrity. – С. 150-156.
Saheed Y.K. et al. (2022) An Efficient Hybridization of K-Means and Genetic Algorithm Based on Support Vector Machine for Cyber Intrusion Detection System. International Journal on Electrical Engineering and Informatics - Volume 14, Number 2, June. – pp-426-442 / https://www.ijeei.org/docs-33491964362d2da 315e476.pdf.
Turruellas J.C. (2024) Understanding Gaussian Mixture Models: A Comprehensive Guide. Building & Telling Stories. https://www.linkedin. com/in/juancolamendy.
Yuklashlar
Nashr qilingan
Qanday qilib iqtibos keltirish kerak
Nashr
Bo'lim
Litsenziya

Ushbu ish Creative Commons Attribution 4.0 Worldwide.





