PROSPECTS FOR THE USE OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN BANKING SERVICES: RISKS AND OPPORTUNITIES

Authors

DOI:

https://doi.org/10.60078/2992-877X-2025-vol3-iss11-pp163-169

Abstract

This article analyzes the implementation of artificial intelligence technologies in commercial banking, examining their impact on operational efficiency, credit risk assessment, and customer service systems. International best practices were compared with the current state of the banking sector in Uzbekistan. The findings indicate that AI can reduce operational costs, enhance fraud-detection efficiency, and improve service speed; however, challenges related to data quality, algorithmic transparency, and cybersecurity remain. The study provides policy recommendations and practical measures to address these issues and to improve the effective integration of AI in banking operations.

Keywords:

artificial intelligence commercial banks digital transformation credit risk

References

Abdukarimov A.E. (2022) Bank tizimida raqamli transformatsiya jarayonlari: muammolar va istiqbollar. – Toshkent: Iqtisodiyot va taʼlim nashriyoti. – 154 b.

Accenture (2022). AI in Banking: Transforming Customer Experience. – Dublin: Accenture Research. – 59 p.

Arner D., Barberis J., Buckley R. (2019) The evolution of fintech: A new post-crisis paradigm? // Georgetown Journal of International Law. – Vol. 48. – P. 1271–1319.

Basel Committee on Banking Supervision (2021) Artificial intelligence and machine learning in financial services: potential implications. – Basel: BIS Publications. – 45 p.

Böhme R. (2018) Cybersecurity in finance: Risks and policy implications. // Journal of Cybersecurity. – Vol. 4(2). – P. 1–15.

Brynjolfsson E., McAfee A. (2017) Machine, Platform, Crowd: Harnessing Our Digital Future. – New York: W.W. Norton & Company. – 312 p.

Deloitte (2021). Digital Banking Maturity and Customer Experience Report. – London: Deloitte Insights. – 65 p.

Goodfellow I., Bengio Y., Courville A. (2016) Deep Learning. – Cambridge, MA: MIT Press. – 800 p.

IBM (2020). Fraud Detection and AI-Based Risk Management Report. – Armonk, NY: IBM Corporation. – 54 p.

Iqtisodiy tadqiqotlar va islohotlar markazi (ITIM) (2023). Tijorat banklarida raqamli texnologiyalar samaradorligi bo‘yicha tahliliy hisobot. – Toshkent: ITIM. – 36 b.

McKinsey & Company (2022). Global Banking Review: Artificial Intelligence in Finance. – New York: McKinsey Publications. – 78 p.

Ngai E.W.T., Liu M. (2020) Customer credit scoring using artificial intelligence techniques: A survey of current research. // Expert Systems with Applications. – Vol. 141. – P. 112–127.

O‘zbekiston Respublikasi Markaziy banki (2023). Raqamli moliya va bank xizmatlaridagi transformatsiya sharhi. – Toshkent: MB Nashriyoti. – 47 b.

Rakhimova G. (2021) Raqamli bank xizmatlarida mijozlar bilan o‘zaro aloqalar samaradorligi. // Iqtisodiyot va innovatsion texnologiyalar jurnali. – №3. – Б. 45–53.

Sobirov Sh. (2023) Sun’iy intellekt asosida kredit risklarini baholash mexanizmlari. // O‘zbekiston banklari jurnali. – №6. – Б. 18–27.

World Bank (2023). Digital Finance and AI Adoption in Emerging Markets. – Washington, D.C.: World Bank Group. – 112 p.

Downloads

Published

How to Cite

Normo‘minov , T. (2025). PROSPECTS FOR THE USE OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN BANKING SERVICES: RISKS AND OPPORTUNITIES. Economic Development and Analysis, 3(11), 163-169. https://doi.org/10.60078/2992-877X-2025-vol3-iss11-pp163-169