Чизиқли моделлар икки ёки ундан ортиқ ўзгарувчилар ўртасидаги муносабатни кўрсатиш учун ишлатиладиган кучли економетрик восита бўлган. Кўпгина тадқиқотлар, шунингдек, чизиқли бўлмаган ҳолатлар учун чизиқли яқинлашувдан фойдаланади, чунки у ҳали ҳам ҳақиқий натижаларни кўрсатиши мумкин. ОЛС усули боғлиқ ва мустақил ўзгарувчилар муносабатларининг чизиқли бўлишини талаб қилади, гарчи кўплаб тадқиқотлар ҳатто чизиқли бўлмаган ҳолатлар учун ҳам ОЛС яқинлашувидан фойдаланади. Ушбу тадқиқотда биз чизиқли регрессияларда, агар муносабатлар чизиқли бўлмаса, интервалларни баҳолашнинг муқобил усули, юклаш усулини киритамиз. Маълумотлар чизиқли бўлмаган муносабатларга ега бўлса, биз анъанавий ва юклаш ишонч оралиқларини солиштирамиз. Ҳақиқий параметрларни билишимиз кераклиги сабабли, биз симуляция тадқиқотини ўтказамиз. Тадқиқот натижаларимиз шуни кўрсатадики, агар хато атамаси ноодатий шаклга ега бўлса, юклаш оралиғи тақсимот тахмини ва кенгроқ интервалли кенглиги туфайли анъанавий усулдан устун бўлади.
ОЛС регрессиялари нуқта ва интервалларни холис ва самарали баҳолаш учун бир қатор фаразларга эга. Тасодифий йўқолган маълумотлар (МНАР) чизиқли регрессияни баҳолашда жиддий муаммоларни келтириб чиқариши мумкин. Ушбу тадққотда биз МНАР маълумотлари билан ОЛС ишонч оралиғи баҳоларининг ишлашини баҳолаймиз. Биз, шунингдек, бундай маълумотлар ҳолатлари учун восита сифатида юклашни таклиф қиламиз ва анъанавий ишонч оралиқларини боотстрап билан солиштирамиз. Ҳақиқий параметрларни билишимиз кераклиги сабабли, биз симуляция тадқиқотини ўтказамиз. Тадқиқот натижалари шуни кўрсатадики, иккала ёндашув ҳам ўхшаш оралиқ ўлчамига эга ўхшаш натижаларни кўрсатади. Боотстрап жуда кўп ҳисоб-китобларни талаб қилишини ҳисобга олиб, анъанавий усулларни МНАР ҳолатида ҳам қўллаш тавсия этилади.