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Abstract. Linear models has been a powerful econometric tool used to show the relationship 
between two or more variables.  Many studies also use linear approximation for nonlinear cases 
as it still might show valid results. OLS method requires the relationship of dependent and 
independent variables to be linear, although many studies employ OLS approximation even for 
nonlinear cases. In this study, we are introducing alternative method of intervals estimation, 
bootstrap, in linear regressions when the relationship is nonlinear. We compare the traditional 
and bootstrap confidence intervals when data has nonlinear relationship. As we need to know the 
true parameters, we carry out a simulation study. Our research findings indicate that when error 
term has non-normal shape, bootstrap interval will outperform the traditional method due to no 
distributional assumption and wider interval width.  

Key words: OLS, nonlinear model, sample size, confidence Interval, bootstrap, accuracy, 
interval size, variance. 
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Аннотация. Чизиқли моделлар икки ёки ундан ортиқ ўзгарувчилар ўртасидаги 

муносабатни кўрсатиш учун ишлатиладиган кучли економетрик восита бўлган. Кўпгина 
тадқиқотлар, шунингдек, чизиқли бўлмаган ҳолатлар учун чизиқли яқинлашувдан 
фойдаланади, чунки у ҳали ҳам ҳақиқий натижаларни кўрсатиши мумкин. ОЛС усули 
боғлиқ ва мустақил ўзгарувчилар муносабатларининг чизиқли бўлишини талаб қилади, 
гарчи кўплаб тадқиқотлар ҳатто чизиқли бўлмаган ҳолатлар учун ҳам ОЛС 
яқинлашувидан фойдаланади. Ушбу тадқиқотда биз чизиқли регрессияларда, агар 
муносабатлар чизиқли бўлмаса, интервалларни баҳолашнинг муқобил усули, юклаш 
усулини киритамиз. Маълумотлар чизиқли бўлмаган муносабатларга ега бўлса, биз 
анъанавий ва юклаш ишонч оралиқларини солиштирамиз. Ҳақиқий параметрларни 
билишимиз кераклиги сабабли, биз симуляция тадқиқотини ўтказамиз. Тадқиқот 
натижаларимиз шуни кўрсатадики, агар хато атамаси ноодатий шаклга ега бўлса, 
юклаш оралиғи тақсимот тахмини ва кенгроқ интервалли кенглиги туфайли анъанавий 
усулдан устун бўлади. 

Калит сўзлар: ОЛС, чизиқли бўлмаган модел, намуна ҳажми, ишонч оралиғи, юклаш 
чизиғи, аниқлик, интервал ўлчами, дисперсия. 
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Аннотация. Линейные модели стали мощным эконометрическим инструментом, 
используемым для демонстрации взаимосвязи между двумя или более переменными.  
Многие исследования также используют линейную аппроксимацию для нелинейных 
случаев, поскольку она все еще может дать достоверные результаты. Метод МНК 
требует, чтобы отношения зависимых и независимых переменных были линейными, 
хотя во многих исследованиях используется приближение МНК даже для нелинейных 
случаев. В этом исследовании мы представляем альтернативный метод оценки 
интервалов, бутстрап, в линейных регрессиях, когда взаимосвязь нелинейна. Мы 
сравниваем традиционные доверительные интервалы и доверительные интервалы 
начальной загрузки, когда данные имеют нелинейную зависимость. Поскольку нам 
необходимо знать истинные параметры, мы проводим моделирование. Результаты 
нашего исследования показывают, что, когда член ошибки имеет ненормальную форму, 
бутстрап-интервал превосходит традиционный метод из-за отсутствия 
предположения о распределении и более широкой ширины интервала. 

Ключевые слова: МНК, нелинейная модель, размер выборки, доверительный 
интервал, бутстрап, точность, размер интервала, дисперсия. 

 

Introduction. 
Ordinary Least Squares (OLS) regression is a cornerstone of statistical analysis. It 

establishes a linear relationship between a dependent variable and one or more independent 
variables, allowing us to estimate the effect of changes in the independent variables on the 
dependent variable. However, OLS relies on several key assumptions to ensure the validity of 
its results. One of the most critical assumptions is linearity in the relationship between the 
independent and dependent variables. This implies that the change in the dependent variable 
is constant for each unit change in the independent variable. 

In many real-world scenarios, however, the relationship between variables is not  
perfectly linear. This limitation can lead to biased estimates and unreliable conclusions when 
using OLS for non-linear models. For instance, imagine analyzing the effect of fertilizer on crop 
yield. Initially, as fertilizer increases, crop yield might rise proportionally. But beyond a certain 
point, adding more fertilizer might have diminishing returns or even negative effects. A linear 
model would not capture this complexity. 

This paper explores the use of the bootstrap approach to construct confidence intervals 
for parameters estimated in non-linear models. Confidence intervals provide a range of 
plausible values for a population parameter, with a certain level of confidence (e.g., 95%). While 
traditional methods for constructing confidence intervals in non-linear models can be complex 
and rely on specific assumptions about the error distribution, the bootstrap offers a more 
robust and flexible alternative. 

The bootstrap method is a resampling technique that utilizes the data you already have 
to create new datasets (called bootstrap samples). By analyzing these bootstrap samples, we 
can estimate the sampling distribution of the parameter estimates, which allows us to construct 
reliable confidence intervals even for non-linear models. 

This chapter outlines the limitations of OLS for non-linear models, introduces the concept 
of confidence intervals, and emphasizes the importance of the linearity assumption in OLS. It 
then highlights the advantages of the bootstrap approach for constructing confidence intervals 
in scenarios where the linearity assumption is violated. The subsequent chapters will delve 
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deeper into the details of the bootstrap method, its application to non-linear models, and the 
interpretation of the resulting confidence intervals. 

 
Literature review. 
Limitations of OLS for Non-Linear Models: Ordinary Least Squares (OLS) regression 

remains a fundamental tool for statistical analysis. However, its core assumption of linearity 
between the independent and dependent variables can lead to significant drawbacks when 
applied to non-linear models (Weisberg, 2014). When the true relationship is non-linear, OLS 
estimates become biased and unreliable (Fox, 2016). This bias arises because the linear model 
fails to capture the true curvature or non-linear trend in the data (Montgomery and Chatterjee, 
2015). 

Consequently, relying solely on OLS for non-linear models can lead to misleading 
interpretations of the relationships between variables and inaccurate predictions (Pindyck and 
Rubinfeld, 2013). For example, imagine analyzing the effect of temperature on ice cream sales. 
An OLS model might suggest a constant increase in sales with rising temperature. However, in 
reality, sales might peak at a certain temperature as consumers turn to other options in extreme 
heat. 

Confidence Intervals and Their Importance: Confidence intervals are a crucial aspect of 
statistical inference. They provide a range of plausible values for a population parameter, with 
a specific level of confidence (e.g., 95%). In regression analysis, confidence intervals are 
typically constructed around the estimated coefficients of the model (Faraway, 2014). These 
intervals help us assess the precision of our estimates and the degree of uncertainty associated 
with them. 

Narrower confidence intervals indicate more precise estimates, while wider intervals 
suggest greater uncertainty. By interpreting confidence intervals alongside the estimated 
coefficients, we can gain valuable insights into the statistical significance of the relationships 
between variables (Gamerman and Lopes, 2006). 

Challenges of Constructing Confidence Intervals in Non-Linear Model: Traditional methods 
for constructing confidence intervals in non-linear models can be complex and rely on specific 
assumptions about the error distribution (Wu, 2004). For instance, delta methods or likelihood-
ratio tests often require normality of the error terms, which might not always hold true in non-
linear models (Harvey, 2013). Additionally, these methods can be computationally intensive, 
especially for intricate non-linear relationships. 

The Bootstrap Approach: A Viable Alternative: The bootstrap method offers a robust and 
flexible alternative for constructing confidence intervals in non-linear models (Efron and 
Tibshirani, 1993). It is a resampling technique that leverages the data you already have to 
create new datasets, called bootstrap samples. These samples are generated by drawing 
observations from the original data with replacement, meaning an observation can be selected 
multiple times in a single bootstrap sample (Efron and Tibshirani, 1994). 

By repeatedly fitting the non-linear model to these bootstrap samples and obtaining the 
corresponding parameter estimates, the bootstrap approach allows us to estimate the sampling 
distribution of the parameter estimates. This sampling distribution reflects the variability of 
the estimates had we collected different samples from the same population (Davison and 
Hinkley, 1997). 

Once the sampling distribution is obtained, we can calculate percentiles to construct 
confidence intervals. For instance, the 2.5th and 97.5th percentiles of the bootstrap distribution 
would provide a 95% confidence interval for the parameter estimate (Efron and Tibshirani, 
1998). 

The beauty of the bootstrap lies in its ability to bypass the need for specific assumptions 
about the error distribution. It relies solely on the data itself, making it a more generalizable 
approach for constructing confidence intervals in non-linear models (Leek, 2010). 
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OLS Confidence Intervals and Limitations in Non-Linear Models 
The Power of OLS Regression: Ordinary Least Squares (OLS) regression remains a 

workhorse in statistical analysis. It establishes a linear relationship between a dependent 
variable (Y) and one or more independent variables (X), allowing us to estimate how changes 
in X impact Y. The core of OLS lies in minimizing the squared deviations between the actual Y 
values and the Y values predicted by the fitted line. This minimization process yields estimates 
for the slope (β₁) and intercept (β₀) coefficients of the linear model: 

 
Y = β₀ + β₁X + ε 

 
Here, ε represents the random error term, capturing the unexplained variation in Y. OLS 

assumes ε follows a normal distribution with a mean of zero and constant variance 
(homoscedasticity). 

Confidence Intervals: Quantifying Uncertainty: A crucial aspect of regression analysis is 
constructing confidence intervals (CIs) for the estimated coefficients. These CIs provide a range 
of plausible values for the population coefficient, with a specific level of confidence (e.g., 95%). 
In OLS, CIs are typically constructed around the estimated slope (β₁) and intercept (β₀). 

The width of the CI reflects the precision of the estimates. Narrower intervals indicate 
more precise estimates, with a higher degree of confidence that the true population coefficient 
falls within that range. Conversely, wider CIs suggest greater uncertainty about the true 
coefficient value. Interpreting CIs alongside the estimated coefficients provides valuable 
insights into the statistical significance of the relationships between variables. 

Non-Linear Relationships: While OLS delivers powerful insights in linear scenarios, its 
core assumption of linearity can become a significant limitation when the true relationship 
between X and Y is non-linear. In non-linear models, the linear model fails to capture the true 
curvature or non-linear trend in the data. This can lead to several issues: 

Biased Estimates: When the relationship is non-linear, the OLS estimates (β₀ and β₁) 
become biased. This means the estimates are systematically skewed away from the true 
population values. Imagine analyzing the effect of advertising spending on sales. A non-linear 
relationship might exist where initial advertising has a high impact, but the effect plateaus or 
even diminishes with further spending. An OLS model would likely underestimate the initial 
impact and overestimate the effect of higher spending levels. 

Unreliable Inferences: Biased estimates lead to unreliable inferences about the 
relationships between variables. Significance tests based on OLS might incorrectly suggest a 
statistically significant relationship when none exists, or vice versa. This can lead to misleading 
conclusions about the true impact of X on Y. 

Limited Generalizability: OLS predictions based on a non-linear relationship are only 
reliable for the range of X values observed in the data. Extrapolating beyond this observed 
range can lead to inaccurate predictions, as the linear model doesn't capture the true 
underlying trend. 

Visualizing the Challenges: A Worked Example: Consider the scenario where we want to 
analyze the effect of fertilizer application (X) on crop yield (Y). Imagine the true relationship is 
a quadratic curve, where initially yield increases with fertilizer application, but eventually 
reaches a peak and starts to decline due to over-fertilization. 

An OLS model would fit a straight line to this data. This line might intersect the true curve 
at two points, potentially leading to misleading interpretations. The estimated slope might 
suggest a positive relationship throughout the observed range, even though the true effect 
plateaus and then becomes negative. 

Furthermore, OLS CIs constructed around the slope estimate would not accurately reflect 
the true uncertainty in the non-linear relationship. 



Iqtisodiy taraqqiyot va tahlil, 2024-yil, may                                                                               www.e-itt.uz  
 

251 
  
 

The Need for Alternative Approaches: The limitations of OLS in non-linear models highlight 
the need for alternative approaches that can provide more reliable estimates and CIs. The next 
chapter will explore the bootstrap method, a robust and flexible technique for constructing CIs 
in non-linear models, even when the specific form of the non-linearity is unknown. The 
bootstrap approach offers a valuable tool for researchers and analysts to gain deeper insights 
from data exhibiting non-linear relationships. 

The Bootstrap: A Resampling Rescue: The limitations of OLS confidence intervals (CIs) in 
non-linear models necessitate alternative approaches. The bootstrap method emerges as a 
powerful and flexible technique for constructing reliable CIs in these scenarios. Unlike 
traditional methods, the bootstrap does not rely on specific assumptions about the error 
distribution or the form of the non-linearity (Efron and Tibshirani, 1993). 

The core idea of the bootstrap revolves around resampling the data you already have. 
Here's how it works: 

Sample with Replacement: We create new datasets, called bootstrap samples, by drawing 
observations from the original data with replacement. This means an observation can be 
selected multiple times in a single bootstrap sample. The size of the bootstrap sample is usually 
equal to the size of the original data. 

Repeat and Estimate: This resampling process is repeated a large number of times (e.g., 
1000 times). For each bootstrap sample, we fit the non-linear model and obtain the 
corresponding estimates for the model coefficients. 

Distribution of Estimates: By repeating step 2 numerous times, we generate a distribution 
of the estimates for each coefficient (e.g., the slope and intercept). This distribution reflects the 
variability of the estimates had we collected different samples from the same population. 

Constructing Bootstrap CI: Once we have the distribution of the estimates from the 
bootstrap samples, we can construct CIs for the non-linear model coefficients. Here's a common 
approach: 

Percentile Method: We identify the percentiles of the bootstrap distribution that 
correspond to the desired confidence level (e.g., 2.5th and 97.5th percentiles for a 95% CI). 
These percentiles represent the lower and upper bounds of the CI for the coefficient. 

For instance, the 2.5th percentile of the bootstrap distribution for the slope estimate (β₁) 
would be the value below which 2.5% of the bootstrap estimates lie. Similarly, the 97.5th 
percentile would be the value above which only 2.5% of the estimates fall. The resulting interval 
represents the range of values within which we are confident (e.g., 95%) the true population 
value for β₁ lies. 

Advantages of Bootstrap CIs in Non-Linear Models: The bootstrap approach offers several 
advantages for constructing CIs in non-linear models: 

Robustness: Unlike traditional methods, the bootstrap doesn't require specific 
assumptions about the error distribution or the form of the non-linearity. It relies solely on the 
data itself, making it a more generalizable approach. (Efron and Tibshirani, 1994) 

Flexibility: The bootstrap can be applied to various non-linear models, regardless of their 
complexity. This makes it a versatile tool for researchers working with diverse datasets. 
(Davison & Hinkley, 1997) 

Interpretability: Bootstrap CIs can be easily interpreted alongside the estimated 
coefficients, providing a clear picture of the uncertainty associated with the estimates in a non-
linear context. (Wasserman, 2004) 

Applying Bootstrap CIs to Our Fertilizer Example: Recall our example where the true 
relationship between fertilizer application (X) and crop yield (Y) is non-linear (quadratic). OLS 
CIs would be unreliable in this scenario. However, the bootstrap method can be applied as 
follows: We would draw bootstrap samples from the original data on fertilizer application and 
crop yield. For each bootstrap sample, we would fit a non-linear model (e.g., a quadratic 
function) to estimate the coefficients. By repeating this process a large number of times, we 
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would obtain a distribution of the estimated coefficients for the non-linear model (e.g., the 
intercept and the coefficient for the quadratic term). Using percentiles from this bootstrap 
distribution, we could construct CIs for each coefficient. These CIs would reflect the uncertainty 
in the estimates due to the non-linear relationship. 

By interpreting the bootstrap CIs alongside the estimated coefficients, we can gain a more 
accurate understanding of the effect of fertilizer application on crop yield. For instance, a wide 
CI for the coefficient of the quadratic term might suggest that the exact peak yield and the point 
of diminishing returns are uncertain due to the non-linearity in the data. 

 
Methodology: simulation. 
In this part, we will look into simulation of a regression model with non-normal error 

term. Simulation is necessary in our study, as we need to know the true parameter in the first 
place. Using real live data will almost never allow us to know the true population coefficients. 
Secondly, we need to control the form of non-normality we are introducing in our case. Our 
simulation starts with the simplest form of linear model with one explanatory variable as given 
below 

Y = 𝛃0+ 𝛃1 * 𝑋1+ Ɛ 
where 

𝑋1 ~ 𝑁(5, 4) 
Ɛ ~ 𝑁(0, 𝑋1/2) 

where intercept ( 𝛽0 ) and 𝛽1  are defined by us. Independent variables (X1) come from 
normal distribution with mean of 5 and standard deviation of 4. Error term has mean of 0 and 
variance dependent of X1 variable. This way we simulate non normal distribution of error term 
known as heteroscedasticity.  

Afterwards, we construction confidence intervals using both approaches, traditional and 
bootstrap ones. In order to evaluate the performance at difference sample size, first we start 
with sample size of 30 and then we increase it by 10 observations up to 200 observations. All 
of the simulations are carried out in R software. 

We take the following steps for simulation of linear model with heteroscedasticity 
with different sample sizes 

Step 1: set intercept 𝛃0= 4 and coefficient 𝛃1=5 
Step 2: Set sample size to n=30 
Step 3: generate  X1 ~ N(5, 4) starting with sample size n 
Step 4: generate Ɛ ~ 𝑁(0, 𝑋1/2) starting with sample size n 
Step 5: generate Y with   Y = 𝛃0+ 𝛃1 * 𝑋1+  Ɛ 
Step 6: Estimate confidence intervals using traditional and bootstrap methods in repeated 

simulations (1000 times). Here we construction 95 percent confidence intervals 
Step 7: evaluate how many times (out of 1000), true parameters were within estimated 

OLS and bootstrap confidence intervals 
Step 8: repeat step 2 to step 8 by adding 10 observations to sample size (n=n+10). Finish 

when sample size reaches 200 observations  
Traditional and bootstrap confidence intervals estimations are discussed in above 

sections. For traditional intervals, we use the following formula which is estimated in any 
statistical package when we construct our linear model. 

𝛽̂1 ± 𝑡𝛼
2

∗ 𝑠𝑒(𝛽̂1) 

In case of bootstrap confidence intervals, we get our bootstrap 95 per cent intervals by 
taking 2.5th and 97.5th percentiles from 1000 estimated bootstrap coefficients. This kind of 
bootstrap approach is known in literature as bootstrapping pairs.  
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Results. 
In this section, we will be looking at the results of our simulation carried out in R. In Figure 

1, one can see non-normal behavior of the error term with respect to X1 explanatory variable. 
This gives a visual image of the violation of the one of the assumptions of the linear model, i.e. 
constant variance of the error term.  

 
Figure1: non-normal variance of the error term in the linear model 

 
We now look at the performance of the confidence intervals constructed using traditional 

and bootstrap approaches. In order to evaluate the performance, we calculate how often the 
true coefficient from our simulation was falling within the given interval. Ideally, the true 
coefficient must fall in at least 95 per cent of simulated cases. We will be terming frequency of 
true coefficient falling within our estimated intervals as accuracy.  

The results in Figure 2 indicate that accuracy of traditional confidence intervals are below 
our benchmark of 95 per cent across all sample sizes (from 30 to 200). In other works, 
traditional approach is suffering a lot from the violations of the OLS assumption. In contrast, 
bootstrap confidence intervals at above 95 per cent benchmark, meaning that bootstrap 
intervals are including true coefficients in at least 95 per cent of cases.  

 

 
Figure 2. Accuracy of Confidence intervals: case of nonlinear model 
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One of the explanations of better performance of bootstrap method lies in the fact that 
this approach does not have any distributional or OLS assumptions in contrast to traditional 
method. Second reason of stronger performance is explained with Figure 3. One can see that 
the size of bootstrap intervals are simply larger which increases changes of including true 
coefficients.  

 

 
Figure 3. Size of confidence intervals 

 
We should note here that bootstrap method might not always outperform traditional 

methods even in case of nonlinear models or violations of OLS assumptions. Our study show 
that specifically when error term has non-constant variance, bootstrap method is showing a 
more promising outcome. Thus, researchers are highly encouraged to consult with related 
papers that is suitable in their specific case before applying traditional or bootstrap methods. 

 
Conclusion. 
This paper looked into cases when data is nonlinear distributed in error term and 

investigated at two ways of confidence interval estimations of coefficients of OLS regression. In 
the first chapter, we gave an introductory guide to our topic explaining the relevance and 
applicability of our study. Afterwards, we revised related literature on topic of using OLS 
approach with nonlinear data and looked into possible pitfalls. Revision of existing papers 
indicate that there is limited literature on application of bootstrap approach in case of nonlinear 
data. Following this chapter, we looked into theory of ordinary least squares and traditional 
approach of constructing confidence intervals. In the same chapter, we also presented how 
bootstrap confidence intervals are applicable in this case and how they are estimated. We have 
employed bootstrapping pair approaches that does not have any distributional assumptions. In 
order to evaluate the performance, we need to know the true parameters. Therefore, we carried 
out a simulation of a simple linear model with one explanatory variable. In order to evaluate 
performance of both approaches we simulated our regression with error term that has different 
variance across independent variable. We simulated our model with different sample size, 
spanning from 30 to 200 observations. Our simulation indicates that traditional approach 
suffers from introduced nonlinearity as its 95 percent intervals include true coefficient in less 
than 95 per cent of the cases. In contrast, bootstrap method has been steadily performing at 
above 95 per cent accuracy across all sample sizes (from 30 to 200 observations). This indicates 
that bootstrap approach is performing better than traditional approach due to two core 
reasons. Firstly, bootstrap method has no distributional assumption in contrast to OLS method. 
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Secondly, our simulation showed that bootstrap intervals are usually wider in size increasing 
the chances of including the true coefficient.  

We need to mention that future researcher should use this method with care, as it might 
not be suitable for all nonlinear cases. Thus, they are recommended to look into studies that are 
related to their case. 
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