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Annomayus. OJIC pezpeccusinapu HyKma 6a UHMEpPBAAIdPHU XO0JAUC 8ad camapaJau
6axonaw y4yH 6up Kamop ¢apasaapza sza. Tacoduguli tiykoseaH masaymomaap (MHAP)
YU3UKAU pe2peccusiHu 6ax01auda Hudouli MyammoadapHu Keamupub yukapuwu MyMKuH. Ywoy
madkkomda 6u3z MHAP mawsaymomaapu 6uaar OJIC uwoHy opaauru 6axo1apuHuHe UJAauuHu
6axonatimus. Bus, wyHuHz0ek, 6yHdall masaymomaap XoaamJaapu y4yH eocuma cugamuia
WKAQWHU Makaug Kuaamu3 6a aH®AHABUL UWOHY OpaaukAapuHu 6oomcmpan 6uiaH
conuwmupamus. Xakukuili napamempaapHu 6UAUWUMU3 KepaKauau cababau, 6u3 cuMyasayus
maodkukomuHu ymkasamu3s. Tadkukom Hamuxcaaapu WyHu Kypcamaouku, UKKa/1a éHoaulys Xam
yXwaw opaauk ya4amuea 32a yxuaw HamuxicaaapHu kypcamadu. boomcmpan xcyda Kyn Xuco6-
KUmMob6/a1apHu ma/aa6 KuAuwuHu xucobea oaub, aHeaHasull ycyasapHu MHAP xonamuda xam
Ky/Aiaw mascus amuaaou.

Kaaum cy3saap: yusukau modea, HAMYHA YA4aMU, UWOHY UHMEPB8As, IOKAAW YU3UFU,
AHUKAUK, UHmMepeas ya4amu, macoduguti amac

JIMHEMHAA PETPECCHUSA C OTCYTCTBUEM JIAHHBIX HE CJIYYAMHO:
METO/J BYTCTPAIIA
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Paxumoea Huaygpap AmuHosHa
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Annomayus. Pezpeccuu OLS umerom Habop donyweHull, 4mobbl moyeuHvle U
UHMepB8a/ibHble OYEHKU 6blau HecMewjeHHbIMU U 3¢ppekmusHbimu. Omcymcemeue 0aHHbIX He
cayvatiHo (MNAR) modxcem co3damb cepbe3Hble Npob.ieMbl ¢ OYyeHKamu 8 NUHEUHOU pezpeccuul.
B amom uccaedosanuu mbl oyeHusaem 3ghpekmusHocmsb 0YyeHoK dosepumesibH020 UHmMepsaida
OLS ¢ daHHbiMmu MNAR. Mul makce npedaazaem 3az2py3Ky Kak cpedcmeo peweHUs makux
cayyaes JaHHbIX U cpagHu8aem mpaduyuoHHble dogepumeibHble UHMep8aJibl € 3a2py304HbIMU
uHmepgaaamu. Ilockoabky Ham HeobXo0umo 3HAMb UCMUHHblE NAPAMEMPbl, Mbl NPOBOJUM
ModeauposaHue. Pezyasbmamul uccaedogaHusi nokaswvlgarom, Ymo o6a nodxoda nokasvlearom
cxodxcue pe3y/bmambul Npu 00UHAKOBOM pasmepe UHMmMepsasnos. Yuumowleas, ymo 6ymcmpan
mpebyem 60/1bWO020 KOAUYeCmeda 8blMUC/AeHUl, MmpaduyuoHHble Memodbl NO-NPEXCHeMy
pekomeHdyemcs ucno1b308ams dadxce 8 cayyae MNAR.

Knamwueevie caoea: snuHeliHasi Modenb, pasmep 8bl6OpKU, dogepumenbHbull UHMepaad,

pan, movyHOCMb, pasmep UHMepsa.id, 0mcymcmaue He CAy4atiHo.
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Abstract. OLS regressions have a set of assumption in order to have its point and interval
estimates to be unbiased and efficient. Data missing not at random (MNAR) can pose serious
estimations issues in the linear regression. In this study we evaluate the performance of OLS
confidence interval estimates with MNAR data. We also suggest bootstrapping as a remedy for
such data cases and compare the traditional confidence intervals against bootstrap ones. As we
need to know the true parameters, we carry out a simulations study. Research results indicate that
both approaches show similar results having similar intervals size. Given that bootstrap required
a lot of computations, traditional methods is still recommended to be used even in case of MNAR

Key words: linear model, sample size, confidence Interval, bootstrap, accuracy, interval size,
missing not at random

Introduction.

Since the introduction, OLS regression has become one of the widely used modelling
techniques to show an impact of one or more variables to another dependent variable. This
linear modelling approach used primarily for two goals. Firstly, OLS regressions can explain the
relationship between two or more variables. Secondly, one can use OLS for simple forms of
forecasting. Though they never perfectly imitate the real world, linear models is very widely
used given its simplicity to build and ease of interpretability. Linear regressions provide almost
always an approximation of real life relationships. In order for our OLS regression give reliable
estimations, we must meet a set of OLS assumptions. These requirements are:

1. Equal variance of the error term
No strong multicollinearity between explanatory variables
No severe outliers
Sample size to be larger than 30 observation
Linearity in relationship
Normality of residuals
Stationarity or no autocorrelation of residuals (in case of time series data)

No important data missing in our dataset

In case any of these assumptions are violated, OLS confidence intervals might give
misleading outcomes and inferences. Interested researchers can refer to Gujarati (2004) for
more in-depth discussions of these assumptions and outcomes when they are violated. In this
study however, we will concentrate on the case when an important data points are missing not
at random. This case appears relatively often in cross sectional data when data collection in
certain segments of the society is quite difficult or impossible. The results of this study will be
of great benefits for cross sectional analysis which is applied not only in economic studies but
also in many other social sciences. As we need to know the true coefficient in order to evaluate
estimated intervals we will carrying out a simulation study and comparing both methods. In
later chapters, we are going to look at how OLS confidence intervals may behave when data is
missing not at random (hereafter referred as MNAR) and whether bootstrapping can serve as
a remedy for such cases.

The paper is structured in the following way. First, we will discussing any existing studies
on this topic and look at their findings. Afterwards, we will look at theoretical side of traditional
confidence interval estimation and bootstrapping of the data and building bootstrap intervals.
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Next, we will have a look at simulation approached carried out in R. Lastly, we will look into the
results of the simulation and draw our conclusion.

Literature review.

Bootstrapping is a simple et a powerful resampling tool for estimating the properties of a
certain statistic or parameter. The idea of bootstrapping lies in repeatedly resampling the
sample data. This approach has been pioneered first by Efron (1979) and since then, bootstrap
resampling has been widely used in many social sciences.

Bootstrap resampling can also be used in the context of linear models. In the literatures,
two types of bootstrapping is used in linear models, bootstrapping residuals and bootstrapping
pairs (Chernick and LaBudde, 2011).

Bootstrapping pairs: bootstrapping pairs is a rather simple but powerful approach
proposed first by Freedman (1981). Under this approach, we resample independent and
dependent variables from the original sample which results in a bootstrap sample. We then use
usual OLS method to estimate f* from the bootstrap sample. This procedure is repeated B
times in order to get distribution of coefficients ﬁ}‘ estimates for j=1,2,...., B. This distribution in

turn can give bootstrap standard deviation.

When comparing two approaches, a paper by Efron and Tibshirani (1986) come to
conclusion that both approaches are equivalent when all assumption of the OLS are met, but
each approach can perform differently when number of observations is small. Comparing
compared bootstrapping residuals and bootstrapping pairs when the model is correctly
specified and when heteroscedasticity is present in the linear models, Flachaire (2003)
concludes that when a proper transformation to the residual term is applied (wild bootstrap),
residuals bootstrap performs better than bootstrapping pairs. Another paper by Chernick and
LaBudde (2011) finds however that bootstrapping vectors are less sensitive to violations of
model assumptions and can still perform well if those assumptions are not met. This can be
explained by the fact that the vector method does not depend on model structure while
bootstrapping residuals do.

Bootstrapping residuals: As noted earlier, this is a resampling technique first introduced
by Efron in 1982. Let us consider the following model: Y; = g;(f) + e;, for i=12,..,n

where g;(f) is a function with a known form. To estimate 5, we minimize distance
between our true dependent variable Y; and estimated function g;(f). These distances are
expressed in terms of residuals &, = Y; — g;(f). The idea behind Wild bootstrap is to take the
distribution of residuals each having probability of 1/n for i=1,2,...,n and sample n times from
this distribution to get bootstrap sample of residuals which can be denoted as (e4, e;, €3, ..., €,,).
Afterwards, bootstrap dependent variable can be generated using Y;* = g;(8) + e;*. Now, as
we have our bootstrap dataset, we use simple OLS method to estimate 8*. We repeat the above
procedure B times to get a distribution of ﬁ}" estimates for j=1,2,...,B. One can get standard
deviation of * to build bootstrap confidence intervals.

Other methods are also considered in further literature such as the percentile-t bootstrap
(Diciccio and Efron, 1992), stationary bootstrap (Politis and Roman, 1994) and each used under
different scenarios of non-constant variance of the residuals.

This study wants to shed further light into the method of bootstrapping pair in the context
of OLS models with data missing not at random.

Linear regression models.

Now, we will look into the method of building of linear models in more details. As
mentioned on earlier chapters, linear regressions try to reveal relationship between one y
(often referred as dependent variable ) and one or more x variables (often referred as explained
or dependent variable). The principle of linear model lies in mathematically calculating the beta
coefficients of those x variables. For example, somebody wants to evaluate whether having a
university degree influences ones income and if es, by how much. Linear regression as intended
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to answer exactly these questions using so called ordinary least squared (referred as OLS)
method where income is dependent “Y” variable, and ear of education is “X_1" explanatory
variable. Then coefficient of “years of educations” (f;) shows the size and direction (positive or
negative) of the influence.

Yzﬁo +ﬁ1 *X1+e

Where Y — dependent variable, , - intercept (should not necessarily have meaning)
B1 — coefficient of first explanatory variable, X; — explanatory or independent variable, e —
error or residual term

Given formula is a clear example of linear relationship between X and Y variables.
Although, relationship between two variables is almost never linear in real life, linear
approximation has proven to work well in many domains. In practice, researchers take more X
variables that have been theoretically proved to affect selected depended variable Y. In order
to evaluate the correctness and accuracy of the model, a set up statistics such as R squared,
adjusted R squared, AIC or BIC are used in practice. This part is out of the score of our research,
although interested readers can refer to Greene (2004).

Estimation of coefficients in the above model is done with the method of least squares
commonly known as OLS (ordinary least squares). Least squares estimate of 8, is given by:

g = Zim K= X)(-Y)
i=1 (Xi—K)Z

Where n — number of observations, X; — value of the independent variable for the i-th
observation, Y; — value of the dependent variable for the i-th observation, X — mean of the
independent variable X, Y — mean of the independent variable Y

Traditional confidence intervals.

We are very often interested in not only coefficient estimates of, but also interval of
possible values of the coefficient with certain level of confidence. In literature, the latter is
knows as confidence intervals. Researchers are interested in interval estiamtes because point
estimates of coefficients are always an approximation to true population value. In contrast,
interval estimations, commonly known as confidence intervals, have a set of advantages. Firstly,
it gives a range of values where true population value can be located. Secondly, confidence
intervals will indicate whether the true population parameter might be equal to 0. In other
words, whether the effect of that specific explanatory/independent variable to dependent
variable is insignificant. Currently, all statistical software provide both point and interval
estimates by default. Below, we will look at the theoretical side of building confidence intervals
of coefficients of linear models.

Confidence interval construction takes its origin from the core theory in statistics, Central
Limit Theorem (referred to CLT). CLT indicates that if one derives many sample averages from
many samples generated from the same population, then the distribution of sample averages is
approximately normal (also referred as Gaussian) (Lind et al, 1967). The midpoint of resulting
distribution of sample averages will be equal to the true population mean (see Figure 1). This
is a very strong finding that can also be applied in confidence interval construction.
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.

Distribution

Normal Distribution

Figure 1

In reality, we almost never can take many samples from the same population due to size
of the population (imagine taking 1000 samples of 10 000 size each) and very often left to work
with only one sample. Nevertheless, one can still make some estimation regarding the
population value (e.g. mean, coefficient) using the central limit theorem even when the
distribution of the population dataset is not known.

Confidence interval based on CLT: Consider we have only one sample from the population
data. Firstly, we can estimate the sample coefficient using the method of ordinary least squares
(discussed in previous chapter). Afterwards, we can estimate standard error of the estimated
coefficient using the following formula also arising from the method of least squares.

A s
se(f1) = -
JZ?=1 (X; — X)
Where s — standard deviation of the residuals (residual standard error), n — number of

observations, X; — value of the independent variable for the i-th observation, X — mean of the
independent variable X

As distribution of ; coefficient is approximately normal distribution based on central
limit theorem, we employ properties of standard normal distribution (z-distribution) and build
90%, 95% or 99% confidence intervals.

P1 + za * se(By)
2
Where f3;- is sample coefficient estimate, z« - is a value from the standard normal
2

distribution the give an area of %, se(f,) - sample variance of the coefficient

The above confidence interval can be understood in the following way. 97% interval
indicates that if we construct 100 confidence intervals from 100 random samples generated
from the true population, then 97 of those confidence intervals will contain true population
coefficient f5;. Also, employing this confidence interval you can verify whether population
coefficient is insignificant. If estimated confidence interval contains zero, then one can suspect
that the true population parameter can be equal to zero (Gujarati, 2004)

Yet, the estimation of intervals and coefficients depends on the completeness of the data
which is one of the assumptions of the linear model. Intervals estimates may give inaccurate or
even biased calculations if certain portion of very important data is missing. In this study we
look at this case also known as Data Missing Not at Random.
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In the next section, we suggest another way, bootstrapping, of handling in residuals for
construction of our confidence intervals for coefficients.

BOOTSTRAP CONFIDENCE INTERVAL ESTIMATION

Bootstrap confidence intervals offer alternative ways of building intervals which is rather
simple approach. Bootstrap implies selecting one sample and generating many other different
samples from this single original sample and estimating your parameter of interest in each
newly created sample. Under the bootstrap approach, the original sample is considered as a
population and we generate many other samples (known as bootstrap samples) out of it. When
a large number of bootstrap samples are created, we estimate sample parameters (e.g.
coefficient) from every bootstrap sample. Consequently, we will have a distribution of
bootstrap sample estimates.

This distribution of bootstrap sample estimates can be used to construct our confidence
intervals. For example, if we want to construct a 95 percent interval, we take 2.5th and 97.5th
percentiles from bootstrap distribution. Figure 2 explains visually the method of bootstrapping.

B sets of Bootstrap Samples B number of Estimates

X
Bootstrap Distribution
of Parameter Estimates

*2 0.30

|

X™®

Figure 2

SIMULATION

In this section, we discuss simulation of linear regression and introduce case of data
missing not at random. We do not use real life data, but we rather simulate for two reasons. In
the first place, true population coefficient §; should be known to us and in real life we almost
never know the true parameters. In the second place, we need to be aware of the form of data
missing not at random, i.e. what share of data is missing and from which variable. We rely on
existing papers to imitate a similar form of data missing not at random. Our simulation starts
with the simplest form of linear model with one explanatory variable as given below

Y="[0o+ A *X1+E
where
X1~N(5,4)
€~ N(0,50)
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where intercept ( S, ) and f; are defined by us. Independent variables (X1) come from
normal distribution with mean of 5 and standard deviation of 4. Error term has mean of 0 and
variance of 50.

In order to simulate data missing not a random, we follow the approach of Schafer et al
(2002) where certain part of upper percentile of X variable is removed. In our case we take
above 80t percentile data from X and remove 90 per cent of that data. Those values will be
labelled as NA or Null (in R studio, both are treated equally). Afterwards, we construction
confidence intervals using both approaches, traditional and bootstrap ones. In order to evaluate
the performance at difference sample size, first we start with sample size of 30 and then we
increase it by 10 observations up to 200 observations. All of the simulations are carried out in
R software.

We take the following steps for simulation of linear model with heteroscedasticity
with different sample sizes

Step 1: set intercept Blo= 4 and coefficient @1=5

Step 2: Set sample size to n=30

Step 3: generate X1 ~ N(5, 4) starting with sample size n

Step 4: generate € ~ N(0,50) starting with sample size n

Step 5: generate Y with Y =R+ B *X1+ €

Step 6: take X observations that are above 80t percentile and remove 90 per cent of that
data.

Step 7: Estimate confidence intervals using traditional and bootstrap methods in
repeated simulations (1000 times). Here we construction 95 percent confidence intervals

Step 8: evaluate how many times (out of 1000), true parameters were within estimated
OLS and bootstrap confidence intervals

Step 9: repeat step 2 to step 8 by adding 10 observations to sample size (n=n+10). Finish
when sample size reaches 200 observations

Traditional and bootstrap confidence intervals estimations are discussed in above
sections. For traditional intervals, we use the following formula which is estimated in any
statistical package when we construct our linear model.

ok ta = se(B)

Bootstrap confidence intervals are built taking values in certain percentiles of parameter
distributions that were generated as a result of bootstrapping.

Results

This part will introduce us with the outcomes of different simulations carried out in R
studio software. One simulation is with correctly specified model with no missing data and
second is with MNAR data. We also take a look at how estimated intervals change as we change
our sample size.

Correctly specified model

In the first place, it is necessary to evaluate how traditional confidence interval and
bootstrap confidence intervals perform when all data is present and we don’t have any violation
of regression assumptions. According to theory and many revised studies, it is expected that
both methods will perform relatively similar to each other. In other words, for 95 percent
confidence intervals, we expect true parameters to fall within estimated intervals at least 95
per cent of cases.

Figure 3 below illustrates how often true coefficients fall within estimated confidence
intervals built using traditional and bootstrap methods. We can observe that both approaches
are doing pretty good, that is constructed intervals are containing true coefficient at least 95
per cent of the cases with different sample size. In other words, the chart clearly shows that
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both traditional and bootstrap confidence intervals contain true parameter in 90-100 percent
of the cases which is expected outcomes.

Accuracy of confidence intervals: correctly specified model

/
/
0,94 \/ M \/
0,91
0,88
0,85
20 40 60 80 100 120 140 160 180 200

= 3ccuracy_simple accuracy_boot Benchmark

Figure 3

Bootstrap confidence intervals contain true coefficients more often compared to
traditional OLS intervals. This is explained in the second graph which shows that bootstrap
intervals are larger in width compared to OLS intervals across all sample sizes (see Figure 4)

Size of confidence intervals: correctly specified model
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Figure 4

Data missing not at random

Here we will be looking at performance of traditional and bootstrap interval estimations
when large portion of upper percentile of explanatory variables is missing. To remind the
reason, we tool upper 80t percentile of X variables and removed 90 per cent of that data.
Afterwards, we estimated confidence intervals using traditional and bootstrap approaches.
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Lastly we evaluated how often the true coefficient from our simulation was falling within the
given interval. Ideally, the true coefficient must fall in 95 per cent of simulated cases.

The results in Figure 5 indicate that accuracy of traditional and bootstrap intervals
estimates are oscillating around 95 per cent which is out benchmark. This indicates that both
approaches are doing pretty well in term of interval estimates even when quite important
portion of data is missing. This is a very strong and good finding in favor of traditional
approaches.

This tells us that even when large share of important data is missing, traditional central
limit theorem based interval estimation is doing a pretty good work.

Accuracy of Confidence intervals: case of missing data not at random

99%
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Figure 5

If we compare sizes of confidence intervals from Figure 6 estimated using traditional
and bootstrap methods, one can see that both approaches have a very similar size.

Given that bootstrap requires a lot of computing power and both approaches are
showing similar results, we can conclude that traditional approach is still reliable even when
good share of important data is missing not at random.

Size of confidence intervals
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Figure 6
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Conclusion

This study looked into cases when important data is missing not at random and looked at
two ways of interval estimations of coefficients of linear regression. In the first place, we revised
related literature on topic of data MNAR. Based on our investigation, there is limited literature
on application of bootstrap approach in case of data missing not at random. Afterwards, we
investigated the theoretical side of linear models and traditional way of building confidence
intervals that is based on central limit theorem. Along with that, we also looked into bootstrap
approach of constructing confidence intervals. We have employed bootstrapping pair
approaches that does not have any distributional assumptions. In order to evaluate the
performance, we need to know the true parameters. For this reason, we carried out a simulation
of a simple linear model with one explanatory variable. In order to evaluate performance of
both approaches we simulated our regression with MNAR data with different sample size,
spanning from 30 to 200 observations. Simulation results indicate that even when important
data is missing not at random, both, traditional and bootstrap methods are building rather good
intervals. In other words, both interval estimates have been including the true coefficient in
around 95 per cent of the cases. In additional, interval sizes of both, traditional and bootstrap
confidence intervals are quite similar. This is rather strong finding in favor of both approaches.
Yet, as bootstrap requires intense computational power while traditional methods is estimated
in a fast way, we conclude that researchers are recommended to still use traditional method
even when good share of important data is not missing at random.

Reference:

Carpenter, ]. R, & Kenward, M. G. (2012). Missing data in clinical trials: a practical guide.
Practical Guides to Biostatistics and Epidemiology. Cambridge University Press.

Chernick, M. R, and LaBudde, R. A. (2014). An introduction to bootstrap methods with
applications to R. John Wiley & Sons.

Chernozhukov, V., and Hong, H. (2003). An MCMC approach to classical estimation. Journal
of Econometrics, 115(2), 293-346.

Davison , A. C., and Hinkley , D. V. (1997). Bootstrap Methods and Their Applications.
Cambridge University Press, Cambridge .

DiCiccio , T, and Efron , B. (1992). More accurate confidence intervals in exponential
families. Biometrika 79, 231 - 245.

Efron, B, and Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence
intervals and other measures of statistical accuracy. Statistical Science. Vol. 1,54 - 77

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics,
7(1), 1-26.

Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. SIAM,
Philadelphia

Fan, Y, and Li, Q. (2004). A consistent model specification test based on the kernel density
estimation. Econometrica, 72(6), 1845-1858.

Flachaire, E. (2007). Bootstrapping heteroscedastic regression models: wild bootstrap vs
pairs bootstrap. Computational Statistics and Data Analysis, 49 (2), 361-376

Freedman , D. A. (1981). Bootstrapping regression models. Annals of Statistics, 9, 1218 -
1228

Graham, J. W. (2003). Adding missing-data-relevant variables to FIML-based structural
equation models. Structural Equation Modeling, 10(1), 80-100.

Greene, W. H. (2021) Econometric Analysis, 8th edn, Pearson

Gujarati, D. N., Porter, D. C, and Gunasekar, S. (2012). Basic econometrics. McGraw-Hill
Higher Education

501




Iqtisodiy taraqqiyot va tahlil, 2024-yil, aprel www.e-itt.uz

He, Y., & Zaslavsky, A. M. (2012). Diagnostics for multiple imputation in surveys with
missing data. Biometrika, 99(4), 731-745.

Horowitz, J. L., and Markatou, M. (1996). Semiparametric estimation of regression models
for panel data. Review of Economic Studies, 63(1), 145-168.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2023). An Introduction to Statistical
Learning. Publisher.

Lind, D. A., Marchal, W. G., and Wathen, S. A. (1967). Statistical Techniques in Business and
Economics (2m ed). Publisher

Little, R. ]. A., & Rubin, D. B. (1987). Statistical analysis with missing data. Wiley.

Liu, R. Y. (1988). Bootstrap procedures under some non i.i.d. models . Annals of Statistics
16,1696 - 1708

Politis, D. and Romano, ], (1994). The Stationary bootstap. The journal of American
Statistical Association. 89 (428), 1303-1312

Schafer, |. L., & Graham, J. W. (2002). Multiple imputation for missing data: A cautionary
tale. Sociological Methods & Research, 31(4), 445-454.

502




