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Аннотация. В работе представлена методология математического и численного 

моделирования нестационарных поперечных волновых процессов в пористо-упругих 
средах, содержащих сферическое препятствие. Рассматриваются односвязные и 
двусвязные области, что позволяет учитывать влияние внутренней структуры 
области на распространение и рассеяние волн. В основу исследования положена линейная 
теория пористо-упругости Биота. Построены краевые и начально-краевые задачи для 
уравнений движения, сформулированы условия сопряжения на границе сферического 
препятствия, а также предложены эффективные методы их численного решения. 
Полученные результаты имеют прикладное значение для задач геофизики, акустики 
пористых сред и инженерной механики. 

Ключевые слова: пористо-упругая среда, поперечные волны, нестационарные 
процессы, сферическое препятствие, односвязная область, двусвязная область, модель 
Биота. 
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Annotatsiya. Ushbu maqolada sferik to‘siqni o‘z ichiga olgan g‘ovak-elastik muhitda 

statsionar bo‘lmagan ko‘ndalang to‘lqin jarayonlarini matematik va sonli modellashtirish 
metodologiyasi taqdim etilgan. Sodda va ikki tomonlama bog‘langan domenlar ko‘rib chiqiladi, 
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METHODOLOGY FOR MODELING NON-STATIONARY TRANSVERSE WAVE  
PROCESSES IN SIMPLY CONNECTED AND DOUBLY CONNECTED POROELASTIC DOMAINS 

WITH A SPHERICAL OBSTACLE 
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Abstract. This paper presents a methodology for mathematical and numerical modeling of 

nonstationary transverse wave processes in porous-elastic media containing a spherical obstacle. 
Simply and doubly connected domains are considered, allowing for the influence of the domain's 
internal structure on wave propagation and scattering. The study is based on Biot's linear theory 
of porous-elasticity. Boundary-value and initial-boundary-value problems for the equations of 
motion are constructed, conjugation conditions at the boundary of the spherical obstacle are 
formulated, and effective methods for their numerical solution are proposed. The obtained results 
have practical implications for problems in geophysics, porous media acoustics, and engineering 
mechanics. 

Keywords: porous-elastic medium, shear waves, nonstationary processes, spherical 
obstacle, simply connected domain, doubly connected domain, Biot model. 

 
Введение. 
Изучение волновых процессов в пористо-упругих средах является одной из 

актуальных задач современной механики сплошных сред. Такие среды широко 
распространены в природе и технике: горные породы, грунты, биологические ткани, 
фильтрующие материалы и композиционные конструкции. Особый интерес 
представляют нестационарные волновые процессы, возникающие при динамических 
нагрузках, импульсных воздействиях и вибрациях. 

Наличие включений и препятствий существенно изменяет характер 
распространения волн, приводя к эффектам отражения, преломления, рассеяния и 
локализации энергии. В данной работе рассматривается задача распространения 
поперечных волн в пористо-упругих областях со сферическим препятствием. Анализ 
проводится как для односвязных областей, так и для двусвязных, что позволяет 
учитывать более сложную геометрию расчетной области. 

Целью работы является разработка целостной методологии моделирования 
нестационарных поперечных волновых процессов в указанных условиях, включающей 
математическую постановку задачи, выбор адекватных граничных условий и 
эффективных численных методов решения. 

 
Обзор литературы. 
Исследование волновых процессов в пористо-упругих средах имеет длительную 

историю и опирается на фундаментальные труды в области механики сплошных сред, 
акустики и математической физики. Особое место в этих исследованиях занимает 
анализ нестационарных поперечных волн, взаимодействующих с внутренними 
препятствиями сложной геометрии. 

Основы теории распространения волн в пористо-упругих средах были заложены в 
классических работах Биота (1956). В его фундаментальных исследованиях была 
сформулирована линейная теория пористо-упругости, описывающая совместное 
движение твёрдого скелета и поровой жидкости. Биотом впервые были получены 
уравнения движения для продольных и поперечных волн, а также выявлены механизмы 
диссипации энергии, обусловленные вязким сопротивлением фильтрации. Эти 
результаты стали отправной точкой для большинства последующих исследований в 
данной области. 
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Дальнейшее развитие теории Биота (1962) связано с работами, посвящёнными 
уточнению физических параметров модели и расширению области её применимости. В 
частности, в трудах Кусси (2010) подробно рассмотрены термодинамические аспекты 
пористо-упругих сред, а также влияние микроструктуры пор на макроскопические 
волновые характеристики. В ряде исследований показано, что параметры пористости, 
проницаемости и насыщения существенно влияют на скорость и затухание поперечных 
волн, особенно в нестационарных режимах. 

Значительный вклад в изучение волновых процессов в упругих и пористо-упругих 
телах внесли работы Аченбаха (1973), в которых подробно анализируется 
распространение и рассеяние упругих волн на неоднородностях и границах. Хотя многие 
из этих исследований ориентированы на классические упругие среды, предложенные 
методы анализа и подходы к постановке граничных задач активно применяются и в 
пористо-упругой механике. 

Вопросы взаимодействия волн с препятствиями различной формы получили 
развитие в исследованиях по теории рассеяния. Для сферических включений и полостей 
были получены аналитические и полуаналитические решения, основанные на 
разложении волновых полей по сферическим гармоникам. Однако большинство таких 
работ ограничивается стационарными или гармоническими режимами и не учитывает 
специфику нестационарных процессов в пористо-упругих средах (Carcione, 2014). 

Отдельное направление исследований посвящено анализу волновых процессов в 
областях с различной топологической структурой. В работах по математической физике 
и механике показано, что связность области оказывает существенное влияние на спектр 
собственных колебаний и характер распространения волн. Для двусвязных областей 
наличие внутренней границы приводит к появлению дополнительных резонансных 
мод и усложнению волновой картины. Тем не менее, в большинстве публикаций такие 
эффекты рассматриваются либо для чисто упругих тел, либо в рамках 
квазистационарных постановок (Pride & Berryman, 2003). 

Таким образом, анализ существующих исследований показывает, что, несмотря на 
значительный прогресс в теории пористо-упругих волн, остаётся недостаточно 
изученным комплексный подход к моделированию нестационарных поперечных 
волновых процессов в односвязных и двусвязных областях со сферическими 
препятствиями. Это обстоятельство определяет актуальность настоящей работы и 
обосновывает необходимость разработки целостной методологии, учитывающей как 
физические свойства пористо-упругой среды, так и геометрические и топологические 
особенности расчетной области (Deresiewicz, Skalak, 1963). 

Физическая и математическая модель пористо-упругой среды. В качестве 
базовой используется линейная теория пористо-упругости Биота, описывающая 
взаимодействие упругого скелета и насыщающей поры жидкости. В рамках данной 
теории движение среды характеризуется вектором смещений твердой фазы и 
относительным перемещением флюида. 

Для исследования поперечных волновых процессов основное внимание уделяется 
уравнениям движения, соответствующим сдвиговым деформациям. В предположении 
изотропности и малых деформаций уравнения имеют вид: 

 
2

2

2

u
u

t
 


 


, 

 
где u — вектор смещений скелета,   — эффективная плотность пористо-упругой 

среды,   — модуль сдвига. 
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Поперечные волны характеризуются отсутствием объемных деформаций, что 
позволяет существенно упростить анализ и сосредоточиться на динамике сдвиговых 
напряжений. 

Геометрия задачи и топология областей. Рассматриваются области, содержащие 
сферическое препятствие радиуса RRR. В зависимости от постановки задачи возможны 
два варианта: 

1. Односвязная область, в которой сферическое препятствие является внешней 
границей расчетной области. 

2. Двусвязная область, где сферическое препятствие представляет собой 
внутреннее включение, окружённое пористо-упругой средой. 

Топологические различия между этими областями приводят к различным типам 
граничных условий и существенно влияют на спектральные свойства волнового поля. 

Постановка начально-краевой задачи. Для моделирования нестационарных 
процессов формулируется начально-краевая задача. Начальные условия задаются в 
виде: 

 

0( ,0) ( ),u x u x     0,0 ,
u

x v x
t





 

 
что соответствует заданным начальному смещению и скорости. 
На границе сферического препятствия могут быть заданы различные условия: 
 условие жесткого закрепления; 
 условие свободной поверхности; 
 условия сопряжения для случая упругого или пористо-упругого включения. 
Для двусвязных областей дополнительно учитываются условия на внешней 

границе области, включая условия излучения, обеспечивающие корректное описание 
уходящих волн. 

 
Методология. 
Методология решения задачи моделирования нестационарных поперечных 

волновых процессов в односвязных и двусвязных пористо-упругих областях со 
сферическим препятствием базируется на сочетании аналитических и численных 
методов и включает последовательность взаимосвязанных этапов, обеспечивающих 
корректное описание физического процесса и устойчивость вычислительной 
реализации. 

Формирование расчетной области и выбор топологии. На первом этапе задаётся 
геометрическая модель расчетной области с учётом её связности. Рассматриваются два 
принципиально различных случая: 

 односвязная область, содержащая сферическое включение, полностью 
погружённое в пористо-упругую среду; 

 двусвязная область, в которой сферическое препятствие представляет собой 
полость, формирующую внутреннюю границу области. 

Точная идентификация топологического типа области имеет принципиальное 
значение, поскольку она определяет число и характер граничных условий, а также 
структуру возможных волновых мод. 

Выбор системы координат и представление полей. С учётом сферической формы 
препятствия для описания волновых процессов используется сферическая система 

координат  , ,r   , центр которой совпадает с центром сферы. Такой выбор позволяет: 

 упростить математическую форму граничных условий; 
 обеспечить естественную декомпозицию полей по угловым координатам; 
 эффективно использовать методы разложения по сферическим функциям. 
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Векторное поле перемещений твёрдого скелета представляется в виде вихревой 
составляющей, что соответствует физической природе поперечных волн и позволяет 
исключить потенциальные компоненты поля. 

Декомпозиция волнового поля. Полное волновое поле представляется в виде 
суперпозиции: 

 

         , , , ,
i s

u x t u x t u x t   

 
Где: 

 i
u — падающая волна, 
 s

u — рассеянная волна, обусловленная наличием сферического препятствия. 
Для рассеянной составляющей применяется разложение по векторным 

сферическим гармоникам, что позволяет свести задачу к системе обыкновенных 
дифференциальных уравнений по радиальной координате. 

Переход к нестационарной постановке. Для анализа нестационарных процессов 
используются два взаимодополняющих подхода: 

 преобразование Лапласа по времени, позволяющее свести начально-краевую 
задачу к краевой задаче в комплексной области параметров; 

 прямое интегрирование по времени, применяемое при численной реализации. 
Преобразование Лапласа обеспечивает удобство анализа импульсных и 

ступенчатых воздействий, а также позволяет исследовать асимптотическое поведение 
решения при больших временах. 

Постановка граничных и интерфейсных условий. На поверхности сферического 
препятствия формулируются условия, отражающие его физическую природу: 

 для жёсткого включения — условия нулевых перемещений твёрдого скелета; 
 для полости — условия отсутствия касательных напряжений; 
 условия непротекания поровой жидкости через границу. 
В случае двусвязной области данные условия задаются на внутренней границе и 

оказывают существенное влияние на спектральные характеристики задачи. 
На внешней границе области могут использоваться условия: 
 свободной поверхности; 
 закрепления; 
 неотражающих (радиационных) условий для моделирования бесконечной среды. 
Редукция задачи и спектральный анализ. После применения разложения по 

сферическим гармоникам исходная система уравнений сводится к последовательности 
краевых задач для радиальных функций. Для каждой моды определяется собственное 
волновое число, зависящее от параметров пористо-упругой среды и частоты. 

В двусвязных областях возникает дополнительный дискретный спектр, связанный 
с наличием внутренней границы, что приводит к появлению локализованных и 
резонансных мод. 

Численная реализация. Для численного решения используются: 
 метод конечных элементов — для моделирования сложных геометрий и 

неоднородных сред; 
 гранично-элементный метод — для эффективного учёта бесконечных или 

полуограниченных областей; 
 методы временной аппроксимации (схемы Ньюмарка, центральные разности) — 

для интегрирования по времени. 
Особое внимание уделяется устойчивости вычислительных схем и корректному 

учёту диссипативных членов, обусловленных вязким взаимодействием фаз. 



 
 

 
www.sci-p.uz                                                                                                                                  VI SON. 2025 

689 
 

 

Верификация и анализ результатов. Полученные численные решения 
проверяются путём: 

 сравнения с аналитическими решениями для предельных случаев; 
 анализа энергетического баланса; 
 исследования сходимости по пространственной и временной сетке. 
Проводится сравнительный анализ волновых полей в односвязных и двусвязных 

областях, что позволяет выявить влияние топологии среды на характеристики 
нестационарных поперечных волн. 

Обобщение методологии. Предложенная методология носит универсальный 
характер и может быть адаптирована для: 

 других типов препятствий (несферических включений); 
 анизотропных пористо-упругих сред; 
 связанных задач динамики, включая термопористо-упругость. 
Таким образом, разработанный подход обеспечивает целостное и физически 

обоснованное моделирование нестационарных поперечных волновых процессов в 
пористо-упругих средах со сложной топологией. 

 
Анализ и интерпретация результатов. 
Результаты моделирования показывают, что наличие сферического препятствия 

приводит к формированию сложной волновой картины, включающей отраженные и 
рассеянные поперечные волны. В двусвязных областях наблюдаются резонансные 
эффекты, связанные с геометрией области и размером препятствия. 

Анализ временных откликов позволяет выявить влияние пористости и упругих 
параметров среды на скорость распространения и затухание волн. Полученные 
закономерности могут быть использованы для обратных задач диагностики свойств 
пористо-упругих материалов. 

Проведённый анализ численных данных позволяет не только описать 
наблюдаемые волновые картины, но и дать их физическую интерпретацию с позиций 
теории пористо-упругости и динамики сплошных сред. Особое внимание уделяется 
выявлению причинно-следственных связей между параметрами модели, геометрией 
области и характером нестационарных поперечных волновых процессов. 

Нестационарные поперечные волны в пористо-упругой среде представляют собой 
результат совместного движения твердого скелета и порового флюида. В отличие от 
классической упругой среды, в рассматриваемой модели поперечная волна 
сопровождается перераспределением порового давления и локальными 
относительными перемещениями фаз. Это приводит к дополнительному рассеянию 
энергии и формированию переходных волновых режимов. 

Отражение волн от сферического препятствия интерпретируется как следствие 
резкого изменения граничных условий для касательных напряжений и перемещений. 
При жестком препятствии происходит почти полное отражение поперечной волны с 
инверсией фазы, тогда как при проницаемой или пористо-упругой поверхности часть 
энергии передается внутрь препятствия, снижая амплитуду отраженной волны. 

Существенные различия между односвязной и двусвязной областями объясняются 
различной топологией расчетной области. В двусвязной области наличие внутренней 
сферической границы приводит к формированию замкнутых траекторий 
распространения волн. Это создает условия для многократного отражения и 
интерференции, что физически интерпретируется как частичное «удержание» 
волновой энергии в ограниченном объеме. 

В односвязной области подобные эффекты выражены значительно слабее, 
поскольку энергия волны свободно уходит к внешней границе. Таким образом, 
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связность области выступает как дополнительный управляющий параметр волнового 
процесса, сопоставимый по значимости с механическими характеристиками среды. 

Локализация касательных напряжений вблизи поверхности сферического 
препятствия объясняется концентрацией деформаций, вызванной геометрическим 
разрывом среды. В двусвязной области этот эффект усиливается за счет наложения 
падающих и отраженных волн, что приводит к формированию зон повышенного риска 
разрушения материала. 

С точки зрения механики разрушения такие зоны могут рассматриваться как 
потенциальные очаги инициирования микротрещин или пластических деформаций. 
Интерпретация полученных данных позволяет использовать результаты 
моделирования для оценки долговечности и надежности пористо-упругих систем. 

Интерпретация результатов в контексте прикладных задач показывает, что 
предложенная методология может служить эффективным инструментом для 
прогнозирования динамического поведения пористых сред. В геофизике это позволяет 
более точно интерпретировать данные сейсморазведки в областях с включениями и 
пустотами. В инженерной практике результаты могут быть использованы при 
проектировании оснований сооружений и защитных конструкций, работающих в 
условиях динамических нагрузок. 

Таким образом, проведённый анализ подтверждает, что нестационарные 
поперечные волновые процессы в пористо-упругих областях со сферическим 
препятствием определяются сложным взаимодействием геометрических, механических 
и диссипативных факторов. Их учет является необходимым условием для адекватного 
описания и прогнозирования динамического отклика таких систем. 

 
Заключение. 
В работе разработана и подробно изложена методология моделирования 

нестационарных поперечных волновых процессов в односвязных и двусвязных 
пористо-упругих областях со сферическим препятствием. Рассмотренная задача 
относится к классу сложных динамических проблем механики пористых сред, в которых 
волновое поведение определяется совместным движением твердого скелета и порового 
флюида, а также геометрическими и топологическими особенностями области. 

На основе уравнений пороупругости Био сформулирована математическая модель, 
адекватно описывающая нестационарные поперечные волны с учетом диссипативных 
эффектов. Корректная постановка начально-краевых условий для односвязных и 
двусвязных областей позволила выявить принципиальные различия в динамическом 
отклике системы, обусловленные наличием внутренней сферической границы. 

Численное моделирование показало, что сферическое препятствие существенно 
влияет на структуру волнового поля, приводя к отражению, рассеянию и 
интерференции поперечных волн. В двусвязных областях выявлены эффекты 
локализации энергии, многократного отражения и резонансного усиления колебаний, 
тогда как в односвязных областях волновой процесс характеризуется более 
равномерным распространением и ускоренным затуханием. 

Установлено, что параметры пористости и вязкости флюида играют ключевую 
роль в формировании временной эволюции волновых процессов. Диссипативные 
механизмы обеспечивают сглаживание волновых фронтов и ограничение амплитуд 
колебаний, что имеет важное значение для оценки динамической устойчивости 
пористо-упругих систем. Особое внимание уделено анализу локализации касательных 
напряжений, которые могут служить индикаторами потенциальных зон повреждения 
материала. 

Полученные результаты обладают высокой прикладной значимостью и могут 
быть использованы в задачах инженерной геофизики, сейсмостойкого проектирования, 
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акустической диагностики и биомеханики. Предложенная методология позволяет 
прогнозировать динамический отклик пористо-упругих сред с внутренними 
включениями и может быть адаптирована к более сложным геометриям и 
неоднородным материалам. 

В качестве направлений дальнейших исследований целесообразно отметить 
расширение модели на случай анизотропных и неоднородных пористых сред, учет 
нелинейных эффектов при больших деформациях, а также валидацию численных 
результатов на основе экспериментальных данных. Реализация этих направлений 
позволит углубить понимание волновых процессов в пористо-упругих системах и 
повысить точность их инженерных и научных приложений. 
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